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On the cellular automata approach to the I D  Lorentz gas 

Czestaw Oleksy 
Institute of Theoretical Physics, University of Wroclah,  Cybulskiego 36, 50-205 Wroclaw, 
Poland 

ReceiLed 17 July 1989 

Abstract. The one-dimensional stochastic Lorentz gas is studied in continuous space and  
in the cellular automata approach.  It is shown that the cellular automata method leads to  
extra oscillations of velocity autocorrelation. The oscillations arise as  a result of  multiple 
reflections. The  differences between the models become unimportant when the product of 
the concentration of scatterers and  the probability of reflection is small. 

1. Introduction 

Cellular automata (CA)  models have found wide application in physics (Wolfram 
1986a). They are regular arrays of variables, each of which can take discrete values 
and the evolution of CA is defined by some local rules. It has been claimed that C A  

can potentially serve as models for continuum systems such as fluids (Wolfram 1986b). 
In  this paper we shall discuss the properties of the Lorentz gas. The model describes 

the motion of non-interacting light particles. They can be scattered on heavy (fixed) 
centres which are randomly distributed in space. The speed of light particle is constant 
but its velocity direction changes when the particle hits a scattering centre. In discrete 
(lattice) Lorentz models (Ernst and Binder 1988) velocity directions are determined 
by the geometry of the lattice. Hence a discrete Lorentz gas can be considered as a 
cellular automaton (Oleksy and Pekalski 1990). 

The discussion of the Lorentz gas is limited here to the one-dimensional case, 
because we want to make a comparison between the discrete and continuous versions 
and  to find when these models are equivalent. On the other hand, the I D  Lorentz 
model is the simplest non-trivial example which cannot be properly described in the 
Boltzmann approximation and  the memory effects lead to power decay of the velocity 
autocorrelation function (Grassberger 1980, van Beijeren 1982). 

2. The discrete (CA) model 

We will consider the stochastic Lorentz gas in one-dimensional discrete space. The 
model consists of a single particle (or number of non-interacting particles) and fixed 
point-like scatterers which randomly occupy a fraction p of sites of the lattice. A 
particle moves from site to site with unit speed. I f  it meets a scatterer, then its direction 
of motion can be changed with probability of reflection p or  can remain unchanged 
with probability of transmission q = 1 - p .  The directions of velocity are denoted by 1 
and  -1. 
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Now we calculate the probability, N, t ) ,  that a particle at time t is moving in the 
direction +1. In order to d o  this we must calculate the probability of an arbitrary 
trajectory which ends at time t with appropriate direction of the velocity. A trajectory 
can be represented by a set { I , ,  I ? ,  I , ,  . . .} of distances between successive scatterings. 
The probability, P y ,  of finding two nearest centres which are .F steps apart is 

(1) 

In this paper we use the following approximation. It is assumed that the probability 
of an arbitrary trajectory is the product of probabilities of scattering between neighbour- 
ing centres, irrespective of the number of backward scattering between these two 
centres. Hence the memory effects are taken into account, but they are limited to 
nearest scatterers. As an  example, let us calculate the probability of the trajectory 
{m,  I}-the particle meets a scatterer at times 0 and  m and on both occasions is 
transmitted. The probability that the particle meets the third scatterer at time t = m + 1 
is equal to qp(1 -p)'"-lqp(l - p ) ' - ' p  or pqP,,,qPr. As a second example, let us take 
the trajectory which is similar to the one above except that the particle is reflected at 
time t = m + 1 and returns to the starting point at t = 2m + 21. Now we must take into 
account the memory effect-the particle after reflection moves in the way it did before 
reflection. In our approximation the memory effect is limited to the nearest scatterers 
(to the path 1 in the example). Hence we obtain for the second trajectory the p q 3 p P i P r ,  
whereas the exact result is equal to pq'pPJ, .  In the case when 8 particle is trapped 
between two scatterers separated by a distance r and it is k-times reflected, the 
probability of the event is equal p p k P r .  

Taking into account the contribution from all possible trajectories to N, , ( t ) ,  we 
obtain the following expression 

P, = p (  1 - p ) ' ?  

/ - I  

N , , ( t + l ) = ( l - p ) ' + ' N , , ( O ) +  C pkN,,_, ,"0)Wk(t+1)  
k = l  

where 

(1 - p p  (3) C , ( t ) = ( l  - p p  i k f l , l -  

w k  ( f + 1) = UA+] ( f + 1) + (4) 

U,( t )  ={k - p (  t - k [ t / k ] ) } (  1 -p)""' ( 5 )  

I ( ? )  - 2 U k  ( f + 1) - p (  1 - p ) '  I" '-''I 

and [x] denotes the integer part of x. 
The derivation of equation (2) is presented in the appendix. The first term in ( 2 )  

describes the free motion of a particle. The second term represents the motion of a 
particle between nearest scatterers during time f + 1 and the particle is (multiply) 
reflected. These two terms are exact. The last term in (2) represents the contribution 
from all remaining trajectories, in which probabilities are calculated in an  approximate 
way. It is worth noting that N , ( t ) + N - , ( t )  = 1. 

The velocity autocorrelation function ( V A F )  is usually defined as 

W t )  = (U(O)U(t)) (6) 

where ( . . . ) means averaging over configurations of scatterers. In our case (unit speed), 
choosing N,(O) = 1 we can express the VAF as @ ( t )  = Nl(t) - N- , ( t ) .  Taking (2) into 
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account we obtain 

Q ( r + l ) = ( l - p ) ' - l +  c ( - l ) ' p k W ! . ( t + l ) + q  (-1)'pk p C , ( t - m ) o ( m ) .  ( 7 )  

The expression for the V A F  is exact for p = 1 .  

I t 1  I-!. 

k = l  !. = o  m =o 

3. Computer simulations 

In order to confirm the behaviour of the V A F  described by ( 7 ) ,  we performed computer 
simulations of the I D  Lorentz gas in the same way as Grassberger (Grassberger 1980) 
but in discrete space. In  each run we chose randomly, with probability p = 0.1 ,  the 
position of the scatterers. Then the particle started from the origin and its direction 
of motion was observed in 20 units of mean free time, f m r =  1 / p p .  The system was 
large enough that particles never reached its boundary. The number of runs was 2 x l o 5  
and errors were of order lo- ' .  

The simulations were performed for p = 1 ,  0.85 and  0.75 for two reasons. The 
theory presented above is exact for p = 1 and it seems to be a good approximation for 
p near 1. The second reason is that the effects we want to discuss are better seen for 
p in this range. The results of the simulations (open circles) and solutions of ( 7 )  (full 
circles) presented in figure 1 show a good qualitative agreement. In the simulation as 
well as in the theory, two features of the V A F  are seen: ( i)  long oscillations-minima 
for r near 2 and maxima for 7 near 6, (ii) short oscillations ('teeth'), superimposed 
on the long oscillations, which become larger and sharper as p approaches 1 .  We will 
show later that the 'teeth' are not present in VAF of the continuous model, so they 
come from the discreteness of the space, not from the approximation. 

4. The continuous model 

Instead of deriving an  equation for the V A F  in the continuous model, we get it as the 
limit of ( 7 )  for p + 0. First, the time is expressed in mean free time units T = t / t m l r ,  
then the integer part [ ~ / p ]  is replaced hy r / p  and E l  is replaced by tmr!dr. Hence 
the following equation is obtained: 

Let us note that for p = 1 equation (8)  becomes the same as that derived by Grassberger 
(1980)  for this limiting case. 

Introducing the Laplace transform 

I,!I( z )  = I,' d 7  e-"4( T )  ( 1 1 )  

we can solve ( 8 )  
S m 2  ( l + -  x 

+ ( z ) = - ( l + p ) '  1 ( - l ) " ? p " -  
t n = l  1 + zpm P m = ~  
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Figure 1. Time dependence of the velocity autocorrelation function of the discrete model 
for reflection probabilities p = 0.75, 0.85 and  1.  Full circles represent the predictions of 
theory,  open circles plot the computer  simulation, in which errors are  smaller than the 
diameter of the circle. 

T 

For small p ,  $( z )  = 1 / (  z + 2 )  + O( p ' ) ,  the inverse transform 

d(  7 )  = e-1T + O( j?) 

is the same as the V A F  in the Boltzmann approximation. 
The diffusion coefficient, Dc,  is obtained from the V A F  as 

De= 50' dt  & ( t ) .  

It is easy to see that D, is proportional to $(O) .  Hence we obtain 

Dc= (1 -P)& 
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Figure 2. Time dependence of the velocity autocorrelation function of the continuous 
model for several reflection probabilities: p = 0 ( a ) ,  p = 0.25 ( h ) ,  p = 0.75 ( c )  and p = 1 ( d ) .  

where Do is the diffusion constant calculated for the V A F  in the Boltzmann approxima- 
tion, equation (13). The equation (15) for D, is exact (Grassberger 1980)f. 

In figure 2 we present the VAF, obtained by a numerical solution of (8) for several 
values of p. The VAF decays in  an oscillatory way. With decreasing p the oscillations 
become shorter and more strongly damped, and they disappear as p approaches 0. 

5. A comparison between the discrete model and the continuous model 

From figure 1 and figure 2 we see that the VAF of the discrete model has extra oscillations 
('teeth') in comparison with the VAF of the continuous model. These teeth are created 
by the discreteness of the model, because the same approximation was applied to both 
versions of the Lorentz gas. Moreover, the teeth are also observed in results of computer 
simulations of the 113 discrete Lorentz gas (see figure 1). The magnitude of the teeth 
decreases strongly with decreasing p .  In  figure 3 we present the difference between 
the discrete VAF, (3, and the continuous one, 4, for p = 0.85 and for two concentrations 
of scatterers p = 0.1 and p = 0.025. For p = 0.1 (upper curve) the difference is compar- 
able with the V A F  for 7 > 4. Decreasing p four times (lower curve) leads to a reduction 
of the difference by nearly one order of magnitude. So in this case the discrete VAF 

can be considered as a good approximation to the continuous one. 

t The analogue of the formula (14)  in the case of the discrete model, D, = cP( r ) ,  leads to the result 
D, = (1 - p  + p p ) / 2 p p ,  which is incorrect because for p = 1 (when the approximation becomes exact) the D, 
does not disappear. 
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Fieure 3. The difference betaeen the V A F  of the discrete model and the V A F  of the 
continuous model as a function of time for two concentrations of scatterers: p = 0.10 (upper 
curve) and p =0.025 (lower curve). 

The VAF of the continuous I D  Lorentz gas can be replaced by its equivalent in the 
discrete model provided that the product pp is small enough. 

The common feature of both models are long oscillations of the VAF. They become 
longer and more damped as time increases (see figure 2 ) .  For example, the initial 
extrema for p = 1 and 0.75 are presented in table 1. 

What is the origin of the oscillations? We claim that the oscillations as well as the 
teeth occur as a result of multiple reflections. In  order to show this we use a simpler 
approximation than that used in section 2. Namely, the probability of successive 
reflections on two nearest scatterers is calculated exactly if the number of reflections 
is not greater than M. If it is, the probability is a product of probabilities which fulfil 
the above condition. It means that now the memory effects are limited to the nearest 
scatterers and to M reflections. The equation for the VAF of the discrete model in the 
approximation characterised by M,  Q M ,  is of the following form: 

@ M ( t + l ) = ( l - p ) r + ' +  C ( - l ) k p h w k ( t + l ) + q  C ( - ~ ) ~ p ~  C p c k ( r - s ) Q M ( s )  
M M r - k  

h = l  I, = O  5 = o  
1 - M  

+ ( - p )  M+' c P C U  ( t - s )Q M ( s 1. ( 1 6 )  
S = O  

We do not discuss the VAF of the continuous model. I t  can be obtained from ( 1 6 )  in 
the same way as (8) is obtained from ( 7 ) .  The behaviour of cDM depends strongly 

Table 1. Initial extrema of the V A F  for ( i )  p = 1 and ( i i )  0.75. 

( i )  T 1.92 7.04 15.28 26.70 
d -1.8 x lo-'  1.7 x lo-' -1.2 x 7.9 x 

( i i )  r 1.82 5.91 12.46 21.92 
6 -1.4X l o - '  1 .2x  lo- '  -6.1 x 1 0 - ~  2.7 x 10-5 
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Figure 4. VAF for p = 0.85 and p = 0.1 obtained in the approximation when M multiple 
reflections are accounted for exactly: M = 1 ( a ) ,  M = 2  ( b ) ,  M = 3 ( c )  and M = 7 ( d ) .  

on M. It is easy to solve (16) for M = 0 

@o( r )  = (1  - 2 p p ) ‘ .  (17 )  

Hence, the case M = 0 is equivalent to the Boltzmann approximation. For M = 1 the 
function has one minimum and grows monotonically to zero for large times. The VAF 

has both a minimum and a maximum for M = 2 .  The number of extrema increases as 
M increases. Similarly, the number and magnitudes of the teeth also grow with 
increasing M ,  see figure 4. Hence the oscillations of the VAF occur if and only if the 
probability of multiple reflections is calculated properly. 

In this way we can also explain why Grassberger (1980) obtained a V A F  with only 
one minimum. His calculations were performed in the lowest order of p and they thus 
correspond to M = 1. However, the memory effects were not limited to the nearest 
scatters; thus he could obtain the power decay of the autocorrelation function. 

6. The case p = 1 

Now we want to present and discuss the unexpected behaviour of the VAF of the 
discrete model in the case when p = 1. The VAF is described by (7),  which is exact in 
this case. The oscillations of the V A F  are not damped as t goes to infinity, on the 
contrary they become large. Even if the concentration of scatterers is very small 
( p  =0.005 in figure 5 )  the ‘teeth’ appear and  they grow as t increases. 
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Figure 5. Time dependence of the V A F  of the discrete model for p = 1 and p = 0.005. 

Before entering into a more formal discussion, we present an intuitive explanation 
of the effect. First, let us note that the motion of a particle is periodic for p = 1 .  If 
the particle is located between scatterers separated by a distance s, then at time t = k x 2s, 
k = 1 , 2 , .  . . , it has the initial position and velocity. Of course, here we consider an 
ensemble of particles, so the probability that a particle is on a path of length s is equal 
to P, as given in (1). 

Now we show that for a concentration of scatterers, p, there is a time to such that 
the VAF is greater than 0.264 (see (21)). Let us express p by the mean distance between 
scatterers I,: p = l / lo .  The time to is chosen as the smallest common multiple of 
{ 2 , 4 , 6 , .  . . , 210}. It means that all particles placed on paths of length 1,2 ,  3 , .  . . , lo 
have at time to regained their initial velocities. The probability, Q, that a particle is 
placed on a path of length not greater than lo is equal to 

For any p, this is bounded from below, 

e -1  
e 

Q Z - .  

The probability that the velocity of a particle at time to has its initial value is greater 
than Q, whereas the probability that a particle has velocity opposite to the initial one 
is smaller than 1-0. Taking into account the assumption of unit speed and the 
definition of the VAF, equation ( 6 ) ,  we obtain 

@ ( t , ) 3 2 Q - 1  (20) 
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or, using (19), 

@ ( t o )  3 0.264. 

Furthermore, we can show that for times greater than to the VAF can be greater 
than @(to) .  Let us take t ,  = to(lo+ 1). Hence the probability that a particle at t = t ,  
has its initial velocity is greater than Q. It follows that @( t , )  can be greater than @ ( t o ) .  

We can draw the following conclusion. The oscillations are not damped for large 
time because the motion of a particle is periodic and small distances between scatterers 
are more probable than large ones. Thus, there are distant points on the time scale 
where most of the particles take initial velocity. 

From a comparison between figure 1 and figure 5 we see that for smaller p teeth 
occur later and, roughly speaking, they are removed to infinity when p + 0. 

7. Discussion 

We studied the I D  stochastic Lorentz gas in a CA (discrete) version as well as the 
continuous model in the approximation in which the memory effects, limited to the 
nearest scatterers, are included. The approximation is exact at p = 1 and, as follows 
from comparison between theory and computer simulation, it is very good for p near 
1 (for example p = 0.85). 

The equations for the VAF and the expression for the diffusion coefficient in both 
models are derived. The VAF of the continuous model decays in an oscillatory way. 
The oscillations become longer and more damped as time increases. The VAF of the 
discrete model has short oscillations, called ‘teeth’ in this paper, superimposed on the 
long oscillations. In the limiting case, p = 1, these short oscillations do not disappear 
as time goes to infinity because of the periodicity of the motion of a particle. The long 
as well as the short oscillations arise as results of multiple backward scatterings. 

The autocorrelation functions become similar in both models when the product pp 
is much smaller than 1 - p .  In other words, when the stochastic Lorentz gas can be 
properly described by the discrete (CA) model. 
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Note added in proof:  The formula of the diffusion coefficient of the lattice Lorentz gas (Ernst and Binder 
1989) was recently slightly modified (Ernst and van Velzen 1989) and for the one-dimensional model it can 
be written as Dd=i+I := ,  O ( f ) .  Hence i t  clarifies the problem mentioned earlier in the footnote and for 
the I D  Lorentzgas it gives Dd = (1 - p ) / 2 p p .  It  is worth noting that the Boltzmann (Markovian) approximation 
gives the diffusion coefficient D B = ( l  - p p ) / 2 p p  which is correct only for p = 1. 

Appendix 

Here we derive (2) for the probability, N * , (  t +  l ) ,  that a particle at time t i  1 has its 
velocity pointing in the direction *l .  
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First, let us calculate the probability of the free motion, NF,,(t+l). It can be 
written as a product of two probabilities: ( i )  N,,(O), that a particle had, at t = 0, its 
velocity pointing in the direction * l ,  ( i i )  ( 1  - p ) ' + ' ,  that a particle did not encounter 
any scatterer in t +  1 time steps: 

NF,  ( t + 1 ) = N ,  (0) ( 1 - p ) ' + I .  ( A l l  

Now let us calculate the probability that a particle is trapped between two nearest 
scatterers until time t +  1 ,  NT,,( t + 1 ) .  The probability that a particle is trapped and 
reflected k times ( k  = 1 , 2 , .  . .) during t + 1 time steps and afterwards moves in the 
direction *1 can be written as the product of probabilities: ( i )  N=c-l,i(0), that a particle 
had, at t = 0, its velocity pointing in the direction +( - l ) k ,  (ii) p k ,  that it was reflected 
k times, (iii) pP,{ r - 1 kr - ( t  + l)l}, that scatterers were separated by distance r (the 
term in the brackets { . . . } is the number of initial conditions for given r and k ) .  The 
distance r can change from r,,, = 1 + [( t + 1)/( k + l ) ]  to rmax = [ t / (  k - l ) ] .  Summing 
( i i i )  over r yields wk(t+ I ) ,  (cf equation (4))  

Taking into account all possible numbers of reflection k during t +  I time steps, we 
obtain 

Finally we calculate, in an approximate way, the contribution from all the remaining 
trajectories, N A , , (  t + 1 ) .  Each of these can be divided into two parts in the following 
way. Let us assume that at moment s (Os s S t )  a particle passes through a scatterer, 
and then remains between two nearest scatterers till the moment t + 1 .  So the first part 
of a trajectory is an arbitrary trajectory (it represents motion of a particle between 
moments 0 and s) ,  whereas the second part is limited to two nearest scatterers separated 
by distance r where the particle may be reflected k times ( k  = 0, 1 , 2  . . . ) between 
moments s and t + 1. The probability of such a trajectory can be written as product 
of probabilities: ( i )  q p N , , - , , k ( s ) ,  that a particle with the velocity direction * ( - l ) k  
met a scatterer at moment s and was transmitted, ( i i )  p k ,  that then it was reflected k 
times, (iii) P, that the scatterers were r steps apart. The distance r may change from 
r l  = 1 + [ ( t  - s) / (  k + 1 ) ]  to rz = [ ( 2  - s)/  k ] .  Summing over possible numbers of reflection 
k, moments s and distances r, we obtain the following expression: 

where 
r, 

ck(t-s)=z Pr 
r ,  

and the result is given by (3). 
The probability N,l( t + 1 )  can be written as 

The above equation is equivalent to (2).  
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